Computational Learning Approaches to Data Analytics in Biomedical Applications

This book PDF is perfect for those who love Technology & Engineering genre, written by Khalid Al-Jabery and published by Academic Press which was released on 20 November 2019 with total hardcover pages 312. You could read this book directly on your devices with pdf, epub and kindle format, check detail and related Computational Learning Approaches to Data Analytics in Biomedical Applications books below.

Computational Learning Approaches to Data Analytics in Biomedical Applications
Author : Khalid Al-Jabery
File Size : 47,8 Mb
Publisher : Academic Press
Language : English
Release Date : 20 November 2019
ISBN : 9780128144831
Pages : 312 pages
Get Book

Computational Learning Approaches to Data Analytics in Biomedical Applications by Khalid Al-Jabery Book PDF Summary

Computational Learning Approaches to Data Analytics in Biomedical Applications provides a unified framework for biomedical data analysis using varied machine learning and statistical techniques. It presents insights on biomedical data processing, innovative clustering algorithms and techniques, and connections between statistical analysis and clustering. The book introduces and discusses the major problems relating to data analytics, provides a review of influential and state-of-the-art learning algorithms for biomedical applications, reviews cluster validity indices and how to select the appropriate index, and includes an overview of statistical methods that can be applied to increase confidence in the clustering framework and analysis of the results obtained. Includes an overview of data analytics in biomedical applications and current challenges Updates on the latest research in supervised learning algorithms and applications, clustering algorithms and cluster validation indices Provides complete coverage of computational and statistical analysis tools for biomedical data analysis Presents hands-on training on the use of Python libraries, MATLAB® tools, WEKA, SAP-HANA and R/Bioconductor

Computational Learning Approaches to Data Analytics in Biomedical Applications

Computational Learning Approaches to Data Analytics in Biomedical Applications provides a unified framework for biomedical data analysis using varied machine learning and statistical techniques. It presents insights on biomedical data processing, innovative clustering algorithms and techniques, and connections between statistical analysis and clustering. The book introduces and discusses the major

Get Book
Deep Learning for Data Analytics

Deep learning, a branch of Artificial Intelligence and machine learning, has led to new approaches to solving problems in a variety of domains including data science, data analytics and biomedical engineering. Deep Learning for Data Analytics: Foundations, Biomedical Applications and Challenges provides readers with a focused approach for the design

Get Book
Artificial Intelligence Trends for Data Analytics Using Machine Learning and Deep Learning Approaches

Artificial Intelligence (AI), when incorporated with machine learning and deep learning algorithms, has a wide variety of applications today. This book focuses on the implementation of various elementary and advanced approaches in AI that can be used in various domains to solve real-time decision-making problems. The book focuses on concepts

Get Book
Machine Learning Approaches and Applications in Applied Intelligence for Healthcare Data Analytics

In the last two decades, machine learning has been dramatically developed and is still experiencing a fast and ever-lasting change in paradigm, methodology, applications, and other aspects. This book offers a compendium of current and emerging machine learning paradigms in healthcare informatics and reflects on the diversity and complexity. Machine

Get Book
Data Science and Predictive Analytics

This textbook integrates important mathematical foundations, efficient computational algorithms, applied statistical inference techniques, and cutting-edge machine learning approaches to address a wide range of crucial biomedical informatics, health analytics applications, and decision science challenges. Each concept in the book includes a rigorous symbolic formulation coupled with computational algorithms and complete

Get Book
Introduction to Biomedical Data Science

Overview of biomedical data science -- Spreadsheet tools and tips -- Biostatistics primer -- Data visualization -- Introduction to databases -- Big data -- Bioinformatics and precision medicine -- Programming languages for data analysis -- Machine learning -- Artificial intelligence -- Biomedical data science resources -- Appendix A: Glossary --

Get Book
Deep Learning for Biomedical Data Analysis

This book is the first overview on Deep Learning (DL) for biomedical data analysis. It surveys the most recent techniques and approaches in this field, with both a broad coverage and enough depth to be of practical use to working professionals. This book offers enough fundamental and technical information on

Get Book
Intelligent Data Analysis for Biomedical Applications

Intelligent Data Analysis for Biomedical Applications: Challenges and Solutions presents specialized statistical, pattern recognition, machine learning, data abstraction and visualization tools for the analysis of data and discovery of mechanisms that create data. It provides computational methods and tools for intelligent data analysis, with an emphasis on problem-solving relating to

Get Book