Computational Modelling of Nanomaterials

This book PDF is perfect for those who love Technology & Engineering genre, written by Panagiotis Grammatikopoulos and published by Elsevier which was released on 30 September 2020 with total hardcover pages 244. You could read this book directly on your devices with pdf, epub and kindle format, check detail and related Computational Modelling of Nanomaterials books below.

Computational Modelling of Nanomaterials
Author : Panagiotis Grammatikopoulos
File Size : 46,5 Mb
Publisher : Elsevier
Language : English
Release Date : 30 September 2020
ISBN : 9780128214985
Pages : 244 pages
DOWNLOAD

Computational Modelling of Nanomaterials by Panagiotis Grammatikopoulos Book PDF Summary

Due to their small size and their dependence on very fast phenomena, nanomaterials are ideal systems for computational modelling. This book provides an overview of various nanosystems classified by their dimensions: 0D (nanoparticles, QDs, etc.), 1D (nanowires, nanotubes), 2D (thin films, graphene, etc.), 3D (nanostructured bulk materials, devices). Fractal dimensions, such as nanoparticle agglomerates, percolating films and combinations of materials of different dimensionalities are also covered (e.g. epitaxial decoration of nanowires by nanoparticles, i.e. 0D+1D nanomaterials). For each class, the focus will be on growth, structure, and physical/chemical properties. The book presents a broad range of techniques, including density functional theory, molecular dynamics, non-equilibrium molecular dynamics, finite element modelling (FEM), numerical modelling and meso-scale modelling. The focus is on each method’s relevance and suitability for the study of materials and phenomena in the nanoscale. This book is an important resource for understanding the mechanisms behind basic properties of nanomaterials, and the major techniques for computational modelling of nanomaterials. Explores the major modelling techniques used for different classes of nanomaterial Assesses the best modelling technique to use for each different type of nanomaterials Discusses the challenges of using certain modelling techniques with specific nanomaterials

Computational Modelling of Nanomaterials

Due to their small size and their dependence on very fast phenomena, nanomaterials are ideal systems for computational modelling. This book provides an overview of various nanosystems classified by their dimensions: 0D (nanoparticles, QDs, etc.), 1D (nanowires, nanotubes), 2D (thin films, graphene, etc.), 3D (nanostructured bulk materials, devices). Fractal dimensions,

DOWNLOAD
Computational Modelling of Nanoparticles

Computational Modelling of Nanoparticles highlights recent advances in the power and versatility of computational modelling, experimental techniques, and how new progress has opened the door to a more detailed and comprehensive understanding of the world of nanomaterials. Nanoparticles, having dimensions of 100 nanometers or less, are increasingly being used in applications

DOWNLOAD
Computational Modelling of Nanoparticles

Computational Modelling of Nanoparticles highlights recent advances in the power and versatility of computational modelling, experimental techniques, and how new progress has opened the door to a more detailed and comprehensive understanding of the world of nanomaterials. Nanoparticles, having dimensions of 100 nanometers or less, are increasingly being used in applications

DOWNLOAD
Computational Modeling of Inorganic Nanomaterials

Computational Modeling of Inorganic Nanomaterials provides an accessible, unified introduction to a variety of methods for modeling inorganic materials as their dimensions approach the nanoscale. With contributions from a team of international experts, the book guides readers on choosing the most appropriate models and methods for studying the structure and

DOWNLOAD
Computational Modeling of Inorganic Nanomaterials

This volume provides an accessible, unified introduction to a variety of methods for modeling inorganic materials as their dimensions approach the nanoscale. It guides readers on choosing the most appropriate models and methods for studying the structure and properties (such as atomic structure, optical absorption and luminescence, and electrica

DOWNLOAD
Molecular Modelling and Synthesis of Nanomaterials

This book presents nanomaterials as predicted by computational modelling and numerical simulation tools, and confirmed by modern experimental techniques. It begins by summarizing basic theoretical methods, then giving both a theoretical and experimental treatment of how alkali metal clusters develop into nanostructures, as influenced by the cluster's "magic number" of

DOWNLOAD
Computational Nanotechnology

Applications of nanotechnology continue to fuel significant innovations in areas ranging from electronics, microcomputing, and biotechnology to medicine, consumer supplies, aerospace, and energy production. As progress in nanoscale science and engineering leads to the continued development of advanced materials and new devices, improved methods of modeling and simulation are required

DOWNLOAD
Carbon Nanomaterials  Modeling  Design  and Applications

Carbon Nanomaterials: Modeling, Design, and Applications provides an in-depth review and analysis of the most popular carbon nanomaterials, including fullerenes, carbon nanotubes, graphene and novel carbon nanomaterial-based membranes and thin films, with emphasis on their modeling, design and applications. This book provides basic knowledge of the structures, properties and applications

DOWNLOAD