Data Analysis Techniques for High Energy Physics

This book PDF is perfect for those who love Science genre, written by R. K. Bock and published by Cambridge University Press which was released on 17 August 2000 with total hardcover pages 412. You could read this book directly on your devices with pdf, epub and kindle format, check detail and related Data Analysis Techniques for High Energy Physics books below.

Data Analysis Techniques for High Energy Physics
Author : R. K. Bock
File Size : 43,9 Mb
Publisher : Cambridge University Press
Language : English
Release Date : 17 August 2000
ISBN : 0521635489
Pages : 412 pages
DOWNLOAD

Data Analysis Techniques for High Energy Physics by R. K. Bock Book PDF Summary

Now thoroughly revised and up-dated, this book describes techniques for handling and analysing data obtained from high-energy and nuclear physics experiments. The observation of particle interactions involves the analysis of large and complex data samples. Beginning with a chapter on real-time data triggering and filtering, the book describes methods of selecting the relevant events from a sometimes huge background. The use of pattern recognition techniques to group the huge number of measurements into physically meaningful objects like particle tracks or showers is then examined and the track and vertex fitting methods necessary to extract the maximum amount of information from the available measurements are explained. The final chapter describes tools and methods which are useful to the experimenter in the physical interpretation and in the presentation of the results. This indispensable guide will appeal to graduate students, researchers and computer and electronic engineers involved with experimental physics.

Data Analysis Techniques for High Energy Physics

Now thoroughly revised and up-dated, this book describes techniques for handling and analysing data obtained from high-energy and nuclear physics experiments. The observation of particle interactions involves the analysis of large and complex data samples. Beginning with a chapter on real-time data triggering and filtering, the book describes methods of

DOWNLOAD
Data Analysis in High Energy Physics

This practical guide covers the essential tasks in statistical data analysis encountered in high energy physics and provides comprehensive advice for typical questions and problems. The basic methods for inferring results from data are presented as well as tools for advanced tasks such as improving the signal-to-background ratio, correcting detector

DOWNLOAD
Statistical Analysis Techniques in Particle Physics

Modern analysis of HEP data needs advanced statistical tools to separate signal from background. This is the first book which focuses on machine learning techniques. It will be of interest to almost every high energy physicist, and, due to its coverage, suitable for students.

DOWNLOAD
Statistical Methods for Data Analysis in Particle Physics

This concise set of course-based notes provides the reader with the main concepts and tools needed to perform statistical analyses of experimental data, in particular in the field of high-energy physics (HEP). First, the book provides an introduction to probability theory and basic statistics, mainly intended as a refresher from

DOWNLOAD
Data Analysis Techniques for Physical Scientists

A comprehensive guide to data analysis techniques for the physical sciences including probability, statistics, data reconstruction, data correction and Monte Carlo methods. This book provides a valuable resource for advanced undergraduate and graduate students, as well as practitioners in the fields of experimental particle physics, nuclear physics and astrophysics.

DOWNLOAD
Statistics for Nuclear and Particle Physicists

This book, written by a non-statistician for non-statisticians, emphasises the practical approach to those problems in statistics which arise regularly in data analysis situations in nuclear and high-energy physics experiments. Rather than concentrating on formal proofs of theorems, an abundant use of simple examples illustrates the general ideas which are

DOWNLOAD
Statistical Data Analysis

This book is a guide to the practical application of statistics to data analysis in the physical sciences. It is primarily addressed at students and professionals who need to draw quantitative conclusions from experimental data. Although most of the examples are taken from particle physics, the material is presented in

DOWNLOAD
Pattern Recognition  Tracking and Vertex Reconstruction in Particle Detectors

This open access book is a comprehensive review of the methods and algorithms that are used in the reconstruction of events recorded by past, running and planned experiments at particle accelerators such as the LHC, SuperKEKB and FAIR. The main topics are pattern recognition for track and vertex finding, solving

DOWNLOAD