Dielectric Materials for Wireless Communication

This book PDF is perfect for those who love Technology & Engineering genre, written by Mailadil T. Sebastian and published by Elsevier which was released on 07 July 2010 with total hardcover pages 689. You could read this book directly on your devices with pdf, epub and kindle format, check detail and related Dielectric Materials for Wireless Communication books below.

Dielectric Materials for Wireless Communication
Author : Mailadil T. Sebastian
File Size : 47,9 Mb
Publisher : Elsevier
Language : English
Release Date : 07 July 2010
ISBN : 9780080560502
Pages : 689 pages
Get Book

Dielectric Materials for Wireless Communication by Mailadil T. Sebastian Book PDF Summary

Microwave dielectric materials play a key role in our global society with a wide range of applications, from terrestrial and satellite communication including software radio, GPS, and DBS TV to environmental monitoring via satellite. A small ceramic component made from a dielectric material is fundamental to the operation of filters and oscillators in several microwave systems. In microwave communications, dielectric resonator filters are used to discriminate between wanted and unwanted signal frequencies in the transmitted and received signal. When the wanted frequency is extracted and detected, it is necessary to maintain a strong signal. For clarity it is also critical that the wanted signal frequencies are not affected by seasonal temperature changes. In order to meet the specifications of current and future systems, improved or new microwave components based on dedicated dielectric materials and new designs are required. The recent progress in microwave telecommunication, satellite broadcasting and intelligent transport systems (ITS) has resulted in an increased demand for Dielectric Resonators (DRs). With the recent revolution in mobile phone and satellite communication systems using microwaves as the propagation media, the research and development in the field of device miniaturization has been a major challenge in contemporary Materials Science. In a mobile phone communication, the message is sent from a phone to the nearest base station, and then on via a series of base stations to the other phone. At the heart of each base station is the combiner/filter unit which has the job of receiving the messages, keeping them separate, amplifying the signals and sending then onto the next base station. For such a microwave circuit to work, part of it needs to resonate at the specific working frequency. The frequency determining component (resonator) used in such a high frequency device must satisfy certain criteria. The three important characteristics required for a dielectric resonator are (a) a high dielectric constant which facilitates miniaturization (b) a high quality factor (Qxf) which improves the signal-to-noise ratio, (c) a low temperature coefficient of the resonant frequency which determines the stability of the transmitted frequency. During the past 25 years scientists the world over have developed a large number of new materials (about 3000) or improved the properties of known materials. About 5000 papers have been published and more than 1000 patents filed in the area of dielectric resonators and related technologies. This book brings the data and science of these several useful materials together, which will be of immense benefit to researchers and engineers the world over. The topics covered in the book includes factors affecting the dielectric properties, measurement of dielectric properties, important low loss dielectric material systems such as perovskites, tungsten bronze type materials, materials in BaO-TiO2 system, (Zr,Sn)TiO4, alumina, rutile, AnBn-1O3n type materials, LTCC, ceramic-polymer composites etc. The book also has a data table listing all reported low loss dielectric materials with properties and references arranged in the order of increasing dielectric constant. Collects together in one source data on all new materials used in wireless communication Includes tabulated properties of all reported low loss dielectric materials In-depth treatment of dielectric resonator materials

Dielectric Materials for Wireless Communication

Microwave dielectric materials play a key role in our global society with a wide range of applications, from terrestrial and satellite communication including software radio, GPS, and DBS TV to environmental monitoring via satellite. A small ceramic component made from a dielectric material is fundamental to the operation of filters

Get Book
Dielectric Materials for Wireless Communication

The recent progress in microwave telecommunication, satellite broadcasting and intelligent transport systems (ITS) has resulted in an increased demand for Dielectric Resonators (DRs). With the recent revolution in mobile phone and satellite communication systems using microwaves as the propagation media, the research and development in the field of device miniaturization

Get Book
Materials and Processes for Wireless Communications

Introducing ceramicists to the field of wireless communication, 18 papers cover applications, measurements, designs, and materials. The topics include applications in high-volume microwaves and portable radios, microwave measurement of the complex permittivity and permeability of materials, ceramic-

Get Book
Dielectric Materials for Wireless Communication

Microwave dielectric materials play a key role in our global society with a wide range of applications, from terrestrial and satellite communication including software radio, GPS, and DBS TV to environmental monitoring via satellite. A small ceramic component made from a dielectric material is fundamental to the operation of filters

Get Book
Microwave Resonators and Filters for Wireless Communication

This book describes the basic theory of microwave resonators and filters, and practical design methods for wireless communication equipment. The microwave resonators and filters described provide a basis for building more compact, lighter-weight mobile communication equipment with longer operating times.

Get Book
Microwave Materials and Applications  2 Volume Set

The recent rapid progress in wireless telecommunication, including the Internet of Things, 5th generation wireless systems, satellite broadcasting, and intelligent transport systems has increased the need for low-loss dielectric materials and modern fabrication techniques. These materials have excellent electrical, dielectric, and thermal properties and have enormous potential, especially in wireless

Get Book
Wireless Communication Systems

This practically-oriented, all-inclusive guide covers all the major enabling techniques for current and next-generation cellular communications and wireless networking systems. Technologies covered include CDMA, OFDM, UWB, turbo and LDPC coding, smart antennas, wireless ad hoc and sensor networks, MIMO, and cognitive radios, providing readers with everything they need to master

Get Book
Innovative Smart Materials Used in Wireless Communication Technology

In recent years, wireless communication has become an integral part of daily life, allowing people across the world to communicate with each other easily, regardless of their geographical location. As these technologies develop, innovations are made in the ways in which they are constructed. Emerging trends in smart material usage

Get Book