Modelling of Nuclear Reactor Multi physics

This book PDF is perfect for those who love Technology & Engineering genre, written by Christophe Demazière and published by Academic Press which was released on 19 November 2019 with total hardcover pages 370. You could read this book directly on your devices with pdf, epub and kindle format, check detail and related Modelling of Nuclear Reactor Multi physics books below.

Modelling of Nuclear Reactor Multi physics
Author : Christophe Demazière
File Size : 46,6 Mb
Publisher : Academic Press
Language : English
Release Date : 19 November 2019
ISBN : 9780128150702
Pages : 370 pages
Get Book

Modelling of Nuclear Reactor Multi physics by Christophe Demazière Book PDF Summary

Modelling of Nuclear Reactor Multiphysics: From Local Balance Equations to Macroscopic Models in Neutronics and Thermal-Hydraulics is an accessible guide to the advanced methods used to model nuclear reactor systems. The book addresses the frontier discipline of neutronic/thermal-hydraulic modelling of nuclear reactor cores, presenting the main techniques in a generic manner and for practical reactor calculations.The modelling of nuclear reactor systems is one of the most challenging tasks in complex system modelling, due to the many different scales and intertwined physical phenomena involved. The nuclear industry as well as the research institutes and universities heavily rely on the use of complex numerical codes. All the commercial codes are based on using different numerical tools for resolving the various physical fields, and to some extent the different scales, whereas the latest research platforms attempt to adopt a more integrated approach in resolving multiple scales and fields of physics. The book presents the main algorithms used in such codes for neutronic and thermal-hydraulic modelling, providing the details of the underlying methods, together with their assumptions and limitations. Because of the rapidly expanding use of coupled calculations for performing safety analyses, the analysists should be equally knowledgeable in all fields (i.e. neutron transport, fluid dynamics, heat transfer).The first chapter introduces the book’s subject matter and explains how to use its digital resources and interactive features. The following chapter derives the governing equations for neutron transport, fluid transport, and heat transfer, so that readers not familiar with any of these fields can comprehend the book without difficulty. The book thereafter examines the peculiarities of nuclear reactor systems and provides an overview of the relevant modelling strategies. Computational methods for neutron transport, first at the cell and assembly levels, then at the core level, and for one-/two-phase flow transport and heat transfer are treated in depth in respective chapters. The coupling between neutron transport solvers and thermal-hydraulic solvers for coarse mesh macroscopic models is given particular attention in a dedicated chapter. The final chapter summarizes the main techniques presented in the book and their interrelation, then explores beyond state-of-the-art modelling techniques relying on more integrated approaches. Covers neutron transport, fluid dynamics, and heat transfer, and their interdependence, in one reference Analyses the emerging area of multi-physics and multi-scale reactor modelling Contains 71 short videos explaining the key concepts and 77 interactive quizzes allowing the readers to test their understanding

Modelling of Nuclear Reactor Multi physics

Modelling of Nuclear Reactor Multiphysics: From Local Balance Equations to Macroscopic Models in Neutronics and Thermal-Hydraulics is an accessible guide to the advanced methods used to model nuclear reactor systems. The book addresses the frontier discipline of neutronic/thermal-hydraulic modelling of nuclear reactor cores, presenting the main techniques in a

Get Book
Multi Physics and Multi Scale Modeling and Simulation Methods for Nuclear Reactor Application

A nuclear reactor operates in an environment where complex multi-physics and multi-scale phenomena exist, and it requires consideration of coupling among neutronics, thermal hydraulics, fuel performance, chemical dynamics, and coupling between the reactor core and first circuit. Safe, reliable, and economical operation can be achieved by leveraging high-fidelity numerical simulation,

Get Book
Multi physics Approach to the Modelling and Analysis of Molten Salt Reactors

Multi-Physics Modelling (MPM) is an innovative simulation technique that looks very promising for the employment in the field of nuclear engineering as an integrative analysis support in the design development of current and innovative nuclear reactors. This book presents a Multi-Physics Modelling (MPM) approach to the analysis of nuclear reactor

Get Book
Verification  Validation and Uncertainty Quantification of Multi Physics Modeling of Nuclear Reactors

Verification, Validation and Uncertainty Quantification in Multi-Physics Modeling of Nuclear Reactors is a key reference for those tasked with ensuring the credibility and reliability of engineering models and simulations for the nuclear industry and nuclear energy research. Sections discuss simulation challenges and revise key definitions, concepts and terminology. Chapters cover

Get Book
Experimental Nuclear Reactor Analysis

Experimental Nuclear Reactor Analysis: Theory, Numerical Models and Experimental Analysis presents a consolidated resource on reactor analysis, comprising theoretical concepts of reactor physics, dynamics and thermal-hydraulics. Each element is applied to predict the behaviour of the TRIGA test reactor and its validation with the experimental data. Edited by Dr. Antonio

Get Book
Modeling and Control of a Large Nuclear Reactor

Control analysis and design of large nuclear reactors requires a suitable mathematical model representing the steady state and dynamic behavior of the reactor with reasonable accuracy. This task is, however, quite challenging because of several complex dynamic phenomena existing in a reactor. Quite often, the models developed would be of

Get Book
OpenFOAM

This book contains selected papers of the 11th OpenFOAM® Workshop that was held in Guimarães, Portugal, June 26 - 30, 2016. The 11th OpenFOAM® Workshop had more than 140 technical/scientific presentations and 30 courses, and was attended by circa 300 individuals, representing 180 institutions and 30 countries, from all continents. The OpenFOAM® Workshop provided a forum

Get Book
Numerical Benchmarks for Multiphysics Simulation of Pressurized Heavy Water Reactor Transients

"The IAEA organizes International Collaborative Standard Problems (ICSPs) to facilitate co-operation on advancing reactor technology related activities. These activities include the development, assessment and validation of computer codes for design and safety analysis of nuclear power plants. The objective of this ICSP was to develop and facilitate open access to

Get Book