Optofluidics Sensors and Actuators in Microstructured Optical Fibers

This book PDF is perfect for those who love Technology & Engineering genre, written by Stavros Pissadakis and published by Woodhead Publishing which was released on 19 May 2015 with total hardcover pages 312. You could read this book directly on your devices with pdf, epub and kindle format, check detail and related Optofluidics Sensors and Actuators in Microstructured Optical Fibers books below.

Optofluidics  Sensors and Actuators in Microstructured Optical Fibers
Author : Stavros Pissadakis
File Size : 54,6 Mb
Publisher : Woodhead Publishing
Language : English
Release Date : 19 May 2015
ISBN : 9781782423478
Pages : 312 pages
Get Book

Optofluidics Sensors and Actuators in Microstructured Optical Fibers by Stavros Pissadakis Book PDF Summary

Combining the positive characteristics of microfluidics and optics, microstructured optical fibres (MOFs) have revolutionized the field of optoelectronics. Tailored guiding, diffractive structures and photonic band-gap effects are used to produce fibres with highly specialised, complex structures, facilitating the development of novel kinds of optical fibre sensors and actuators. Part One outlines the key materials and fabrication techniques used for microstructured optical fibres. Microfluidics and heat flows, MOF-based metamaterials, novel and liquid crystal infiltrated photonic crystal fibre (PCF) designs, MOFs filled with carbon nanotubes and melting of functional inorganic glasses inside PCFs are all reviewed. Part Two then goes on to investigate sensing and optofluidic applications, with the use of MOFs in structural sensing, sensing units and mechanical sensing explored in detail. PCF’s for switching applications are then discussed before the book concludes by reviewing MOFs for specific nucleic acid detection and resonant bio- and chemical sensing. Provides users with the necessary knowledge to successfully design and implement microstructured optical fibres for a broad range of uses Outlines techniques for developing both traditional and novel types of optical fibre Highlights the adaptability of microstructured optical fibres achieved via the use of optofluidics, sensors and actuators, by presenting a diverse selection of applications

Optofluidics  Sensors and Actuators in Microstructured Optical Fibers

Combining the positive characteristics of microfluidics and optics, microstructured optical fibres (MOFs) have revolutionized the field of optoelectronics. Tailored guiding, diffractive structures and photonic band-gap effects are used to produce fibres with highly specialised, complex structures, facilitating the development of novel kinds of optical fibre sensors and actuators. Part One

Get Book
Advances in Optofluidics

This book is a printed edition of the Special Issue "Advances in Optofluidics" that was published in Micromachines

Get Book
Specialty Optical Fibers

Specialty Optical Fibers reviews theoretical and experimental photonic research relevant to the synthesis, processing, characterization, modeling, physical features, and applications of Specialty Optical Fibers (SOFs) with significant technological impact potential. All fiber-based advanced photonics device components rely on specialty optical fibers, which have either a unique waveguide structure or a

Get Book
Polymer Optical Fibres

Polymer Optical Fibres: Fibre Types, Materials, Fabrication, Characterization, and Applications explores polymer optical fibers, specifically their materials, fabrication, characterization, measurement techniques, and applications. Optical effects, including light propagation, degrading effects of attenuation, scattering, and dispersion, are explained. Other important parameters like mechanical strength, operating temperatures, and processability are also described.

Get Book
Metamaterial for Microwave Applications

Metamaterials are geometrically patterned new materials that are arranged in periodic way on top of dielectric substrates to exhibit properties unobtainable naturally. This book discusses artificially engineered structures for the development of metamaterials and meta surfaces in the advancement of microwave sensors in sensing technology, non-invasive microwave-based imaging system, antenna

Get Book
Luminescence Thermometry

Luminescence Thermometry: Methods, Materials, and Applications presents the state-of-the art applications of luminescence thermometry, giving a detailed explanation of luminescence spectroscopic schemes for the read-out of temperature, while also describing the diverse materials that are capable of sensing temperature via luminescence. Chapters cover the fundamentals of temperature, traditional thermometers and

Get Book
Nanostructured Magnetic Materials

Functionalized magnetic nanomaterials are used in data storage, biomedical, environmental, and heterogeneous catalysis applications but there remain developmental challenges to overcome. Nanostructured Magnetic Materials: Functionalization and Diverse Applications covers different synthesis methods for magnetic nanomaterials and their functionalization strategies and highlights recent progress, opportunities, and challenges to utilizing these materials

Get Book
Fundamentals and Applications of Nanophotonics

Fundamentals and Applications of Nanophotonics includes a comprehensive discussion of the field of nanophotonics, including key enabling technologies that have the potential to drive economic growth and impact numerous application domains such as ICT, the environment, healthcare, military, transport, manufacturing, and energy. This book gives readers the theoretical underpinnings needed

Get Book