Software Development for Embedded Multi core Systems

This book PDF is perfect for those who love Computers genre, written by Max Domeika and published by Newnes which was released on 08 April 2011 with total hardcover pages 440. You could read this book directly on your devices with pdf, epub and kindle format, check detail and related Software Development for Embedded Multi core Systems books below.

Software Development for Embedded Multi core Systems
Author : Max Domeika
File Size : 53,6 Mb
Publisher : Newnes
Language : English
Release Date : 08 April 2011
ISBN : 0080558585
Pages : 440 pages
Get Book

Software Development for Embedded Multi core Systems by Max Domeika Book PDF Summary

The multicore revolution has reached the deployment stage in embedded systems ranging from small ultramobile devices to large telecommunication servers. The transition from single to multicore processors, motivated by the need to increase performance while conserving power, has placed great responsibility on the shoulders of software engineers. In this new embedded multicore era, the toughest task is the development of code to support more sophisticated systems. This book provides embedded engineers with solid grounding in the skills required to develop software targeting multicore processors. Within the text, the author undertakes an in-depth exploration of performance analysis, and a close-up look at the tools of the trade. Both general multicore design principles and processor-specific optimization techniques are revealed. Detailed coverage of critical issues for multicore employment within embedded systems is provided, including the Threading Development Cycle, with discussions of analysis, design, development, debugging, and performance tuning of threaded applications. Software development techniques engendering optimal mobility and energy efficiency are highlighted through multiple case studies, which provide practical “how-to advice on implementing the latest multicore processors. Finally, future trends are discussed, including terascale, speculative multithreading, transactional memory, interconnects, and the software-specific implications of these looming architectural developments. Table of Contents Chapter 1 - Introduction Chapter 2 – Basic System and Processor Architecture Chapter 3 – Multi-core Processors & Embedded Chapter 4 –Moving To Multi-core Intel Architecture Chapter 5 – Scalar Optimization & Usability Chapter 6 – Parallel Optimization Using Threads Chapter 7 - Case Study: Data Decomposition Chapter 8 - Case Study: Functional Decomposition Chapter 9 – Virtualization & Partitioning Chapter 10 – Getting Ready For Low Power Intel Architecture Chapter 11 - Summary, Trends, and Conclusions Appendix I Glossary References *This is the only book to explain software optimization for embedded multi-core systems *Helpful tips, tricks and design secrets from an Intel programming expert, with detailed examples using the popular X86 architecture *Covers hot topics, including ultramobile devices, low-power designs, Pthreads vs. OpenMP, and heterogeneous cores

Software Development for Embedded Multi core Systems

The multicore revolution has reached the deployment stage in embedded systems ranging from small ultramobile devices to large telecommunication servers. The transition from single to multicore processors, motivated by the need to increase performance while conserving power, has placed great responsibility on the shoulders of software engineers. In this new

Get Book
Software Development for Embedded Multi core Systems

The multicore revolution has reached the deployment stage in embedded systems ranging from small ultramobile devices to large telecommunication servers. The transition from single to multicore processors, motivated by the need to increase performance while conserving power, has placed great responsibility on the shoulders of software engineers. In this new

Get Book
Real Time Systems Development with RTEMS and Multicore Processors

The proliferation of multicore processors in the embedded market for Internet-of-Things (IoT) and Cyber-Physical Systems (CPS) makes developing real-time embedded applications increasingly difficult. What is the underlying theory that makes multicore real-time possible? How does theory influence application design? When is a real-time operating system (RTOS) useful? What RTOS features

Get Book
Software Engineering for Embedded Systems

Multicore software development is growing in importance and applicability in many areas of embedded systems from automotive to networking, to wireless base stations. This chapter is a summary of key sections of the recently released Multicore Programming Practices (MPP) from the Multicore Association (MCA). The MPP standardized “best practices” guide

Get Book
Multicore Software Development Techniques

This book provides a set of practical processes and techniques used for multicore software development. It is written with a focus on solving day to day problems using practical tips and tricks and industry case studies to reinforce the key concepts in multicore software development. Coverage includes: The multicore landscape

Get Book
Real World Multicore Embedded Systems

Efficient software development requires adequate toolsets to assist the developer in analyzing and optimizing a software application’s performance. With the relatively recent advent of multicore embedded hardware platforms, toolsets for supporting multicore development have appeared, although, in some cases, capabilities may be missing or immature, leaving software developers to

Get Book
Software Engineering for Embedded Systems

Software Engineering for Embedded Systems: Methods, Practical Techniques, and Applications, Second Edition provides the techniques and technologies in software engineering to optimally design and implement an embedded system. Written by experts with a solution focus, this encyclopedic reference gives an indispensable aid on how to tackle the day-to-day problems encountered

Get Book
Multi Core Embedded Systems

Details a real-world product that applies a cutting-edge multi-core architecture Increasingly demanding modern applications—such as those used in telecommunications networking and real-time processing of audio, video, and multimedia streams—require multiple processors to achieve computational performance at the rate of a few giga-operations per second. This necessity for speed

Get Book