Statistical Thermodynamics of Semiconductor Alloys

This book PDF is perfect for those who love Science genre, written by Vyacheslav A Elyukhin and published by Elsevier which was released on 23 October 2015 with total hardcover pages 224. You could read this book directly on your devices with pdf, epub and kindle format, check detail and related Statistical Thermodynamics of Semiconductor Alloys books below.

Statistical Thermodynamics of Semiconductor Alloys
Author : Vyacheslav A Elyukhin
File Size : 40,8 Mb
Publisher : Elsevier
Language : English
Release Date : 23 October 2015
ISBN : 9780128039939
Pages : 224 pages
Get Book

Statistical Thermodynamics of Semiconductor Alloys by Vyacheslav A Elyukhin Book PDF Summary

Statistical Thermodynamics of Semiconductor Alloys is the consideration of thermodynamic properties and characteristics of crystalline semiconductor alloys by the methods of statistical thermodynamics. The topics presented in this book make it possible to solve such problems as calculation of a miscibility gap, a spinodal decomposition range, a short-range order, deformations of crystal structure, and description of the order-disorder transitions. Semiconductor alloys, including doped elemental semiconductors are the basic materials of solid-state electronics. Their structural stability and other characteristics are key to determining the reliability and lifetime of devices, making the investigation of stability conditions an important part of semiconductor physics, materials science, and engineering. This book is a guide to predicting and studying the thermodynamic properties and characteristics of the basic materials of solid-state electronics. Includes a complete and detailed consideration of the cluster variation method (CVM) Provides descriptions of spinodal decomposition ranges of crystalline alloys Presents a representation of thermodynamics characteristics and properties as a miscibility gap by using the different approximations of CVM Covers a unique, detailed consideration of the valence force field model with the complete collection of formulas

Statistical Thermodynamics of Semiconductor Alloys

Statistical Thermodynamics of Semiconductor Alloys is the consideration of thermodynamic properties and characteristics of crystalline semiconductor alloys by the methods of statistical thermodynamics. The topics presented in this book make it possible to solve such problems as calculation of a miscibility gap, a spinodal decomposition range, a short-range order, deformations

Get Book
Statistical Thermodynamics of Alloys

This book is intended for scientists, researchers, and graduate students interested in solutions in general, and solutions of metals in particular. Readers are assumed to have a good background in thermodynamics, presented in such books as those cited at the end of Chapter 1, "Thermo dynamic Background." The contents of the

Get Book
Statistical Thermodynamics of Alloys

This book is intended for scientists, researchers, and graduate students interested in solutions in general, and solutions of metals in particular. Readers are assumed to have a good background in thermodynamics, presented in such books as those cited at the end of Chapter 1, "Thermo dynamic Background." The contents of the

Get Book
Theoretical and Computational Methods in Mineral Physics

Volume 71 of Reviews in Mineralogy and Geochemistry represents an extensive review of the material presented by the invited speakers at a short course on Theoretical and Computational Methods in Mineral Physics held prior (December 10-12, 2009) to the Annual fall meeting of the American Geophysical Union in San Francisco, California. The

Get Book
Applied Computational Materials Modeling

The scope of this book is to identify and emphasize the successful link between computational materials modeling as a simulation and design tool and its synergistic application to experimental research and alloy development. The book provides a more balanced perspective of the role that computational modeling can play in every

Get Book
Multiscale Modeling

While the relevant features and properties of nanosystems necessarily depend on nanoscopic details, their performance resides in the macroscopic world. To rationally develop and accurately predict performance of these systems we must tackle problems where multiple length and time scales are coupled. Rather than forcing a single modeling approach to

Get Book
Metallic Alloys  Experimental and Theoretical Perspectives

The development of new materials is recognized as one of the major elements in the overall technological evolution that must go on in order to sustain and even improve the quality of life for citizens of all nations. There are many components to this development, but one is to achieve

Get Book
Handbook of Materials Modeling

The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows

Get Book