Three phase AC AC Power Converters Based on Matrix Converter Topology

This book PDF is perfect for those who love Technology & Engineering genre, written by Paweł Szcześniak and published by Springer Science & Business Media which was released on 28 February 2013 with total hardcover pages 174. You could read this book directly on your devices with pdf, epub and kindle format, check detail and related Three phase AC AC Power Converters Based on Matrix Converter Topology books below.

Three phase AC AC Power Converters Based on Matrix Converter Topology
Author : Paweł Szcześniak
File Size : 54,6 Mb
Publisher : Springer Science & Business Media
Language : English
Release Date : 28 February 2013
ISBN : 9781447148968
Pages : 174 pages
Get Book

Three phase AC AC Power Converters Based on Matrix Converter Topology by Paweł Szcześniak Book PDF Summary

AC voltage frequency changes is one of the most important functions of solid state power converters. The most desirable features in frequency converters are the ability to generate load voltages with arbitrary amplitude and frequency, sinusoidal currents and voltages waveforms; the possibility of providing unity power factor for any load; and, finally, a simple and compact power circuit. Over the past decades, a number of different frequency converter topologies have appeared in the literature, but only the converters with either a voltage or current DC link are commonly used in industrial applications. Improvements in power semiconductor switches over recent years have resulted in the development of many structures of AC-AC converters without DC electric energy storage. Such converters are an alternative solution for frequently recommended systems with DC energy storage and are characterized by a lower price, smaller size and longer lifetime. Most of the these topologies are based on the structure of the matrix converter. Three-Phase AC-AC Power Converters Based On Matrix Converter Topology: Matrix-reactance frequency converters concept presents a review of power frequency converters, with special attention paid to converters without DC energy storage. Particular attention is paid to nine new converters named matrix-reactance frequency converters which have been developed by the author and the team of researchers from Institute of Electrical Engineering at the University of Zielona Góra. The topologies of the presented matrix-reactance frequency converters are based on a three-phase unipolar buck-boost matrix-reactance chopper with source or load switches arranged as in a matrix converter. This kind of approach makes it possible to obtain an output voltage greater than the input one (similar to that in a matrix-reactance chopper) and a frequency conversion (similar to that in a matrix converter). Written for researchers and Ph.D. students working in the field of power electronics converters and drive systems, Three-Phase AC-AC Power Converters Based On Matrix Converter Topology: Matrix-reactance frequency converters concept will also be valuable to power electronics converter designers and users; R&D centers; and readers needing industry solutions in variable speed drive systems, such as automation and aviation.

Three phase AC AC Power Converters Based on Matrix Converter Topology

AC voltage frequency changes is one of the most important functions of solid state power converters. The most desirable features in frequency converters are the ability to generate load voltages with arbitrary amplitude and frequency, sinusoidal currents and voltages waveforms; the possibility of providing unity power factor for any load;

Get Book
AC to AC Converters

Power electronic converters can be broadly classified as AC to DC, DC to AC, DC to DC and AC to AC converters. AC to AC converters can be further classified as AC Controllers or AC regulators, Cycloconverters and Matrix converters. AC controllers and cycloconverters are fabricated using Silicon Controlled Rectifiers (

Get Book
Power Electronics Handbook

Power Electronics Handbook, Fifth Edition delivers an expert guide to power electronics and their applications. The book examines the foundations of power electronics, power semiconductor devices, and power converters, before reviewing a constellation of modern applications. Comprehensively updated throughout, this new edition features new sections addressing current practices for renewable

Get Book
Switching Power Converters

An examination of all of the multidisciplinary aspects of medium- and high-power converter systems, including basic power electronics, digital control and hardware, sensors, analog preprocessing of signals, protection devices and fault management, and pulse-width-modulation (PWM) algorithms, Switching Power Converters: Medium and High Power, Second Edition discusses the actual use of

Get Book
Power Electronics for Green Energy Conversion

POWER ELECTRONICS for GREEN ENERGY CONVERSION Written and edited by a team of renowned experts, this exciting new volume explores the concepts and practical applications of power electronics for green energy conversion, going into great detail with ample examples, for the engineer, scientist, or student. Power electronics has emerged as

Get Book
DC Microgrids

DC MICROGRIDS Written and edited by a team of well-known and respected experts in the field, this new volume on DC microgrids presents the state-of-the-art developments and challenges in the field of microgrids for sustainability and scalability for engineers, researchers, academicians, industry professionals, consultants, and designers. The electric grid is

Get Book
Modular Multilevel Converters

An invaluable academic reference for the area of high-power converters, covering all the latest developments in the field High-power multilevel converters are well known in industry and academia as one of the preferred choices for efficient power conversion. Over the past decade, several power converters have been developed and commercialized

Get Book
Advances in Power Systems and Energy Management

This book is a collection of research articles and critical review articles, describing the overall approach to energy management. The book emphasizes the technical issues that drive energy efficiency in context of power systems. This book contains case studies with and without solutions on modelling, simulation and optimization techniques. It

Get Book