Computational Neuroscience Theoretical Insights into Brain Function

This book PDF is perfect for those who love Science genre, written by Paul Cisek and published by Elsevier which was released on 14 November 2007 with total hardcover pages 570. You could read this book directly on your devices with pdf, epub and kindle format, check detail and related Computational Neuroscience Theoretical Insights into Brain Function books below.

Computational Neuroscience  Theoretical Insights into Brain Function
Author : Paul Cisek
File Size : 42,8 Mb
Publisher : Elsevier
Language : English
Release Date : 14 November 2007
ISBN : 0080555020
Pages : 570 pages
Get Book

Computational Neuroscience Theoretical Insights into Brain Function by Paul Cisek Book PDF Summary

Computational neuroscience is a relatively new but rapidly expanding area of research which is becoming increasingly influential in shaping the way scientists think about the brain. Computational approaches have been applied at all levels of analysis, from detailed models of single-channel function, transmembrane currents, single-cell electrical activity, and neural signaling to broad theories of sensory perception, memory, and cognition. This book provides a snapshot of this exciting new field by bringing together chapters on a diversity of topics from some of its most important contributors. This includes chapters on neural coding in single cells, in small networks, and across the entire cerebral cortex, visual processing from the retina to object recognition, neural processing of auditory, vestibular, and electromagnetic stimuli, pattern generation, voluntary movement and posture, motor learning, decision-making and cognition, and algorithms for pattern recognition. Each chapter provides a bridge between a body of data on neural function and a mathematical approach used to interpret and explain that data. These contributions demonstrate how computational approaches have become an essential tool which is integral in many aspects of brain science, from the interpretation of data to the design of new experiments, and to the growth of our understanding of neural function. • Includes contributions by some of the most influential people in the field of computational neuroscience • Demonstrates how computational approaches are being used today to interpret experimental data • Covers a wide range of topics from single neurons, to neural systems, to abstract models of learning

Computational Neuroscience  Theoretical Insights into Brain Function

Computational neuroscience is a relatively new but rapidly expanding area of research which is becoming increasingly influential in shaping the way scientists think about the brain. Computational approaches have been applied at all levels of analysis, from detailed models of single-channel function, transmembrane currents, single-cell electrical activity, and neural signaling

Get Book
Fundamentals of Computational Neuroscience

The new edition of Fundamentals of Computational Neuroscience build on the success and strengths of the first edition. Completely redesigned and revised, it introduces the theoretical foundations of neuroscience with a focus on the nature of information processing in the brain.

Get Book
Fundamentals of Computational Neuroscience

Computational neuroscience is the theoretical study of the brain to uncover the principles and mechanisms that guide the development, organization, information processing, and mental functions of the nervous system. Although not a new area, it is only recently that enough knowledge has been gathered to establish computational neuroscience as a

Get Book
The Rewiring Brain

The adult brain is not as hard-wired as traditionally thought. By modifying their small- or large-scale morphology, neurons can make new synaptic connections or break existing ones (structural plasticity). Structural changes accompany memory formation and learning, and are induced by neurogenesis, neurodegeneration and brain injury such as stroke. Exploring the

Get Book
The Computational Brain  25th Anniversary Edition

An anniversary edition of the classic work that influenced a generation of neuroscientists and cognitive neuroscientists. Before The Computational Brain was published in 1992, conceptual frameworks for brain function were based on the behavior of single neurons, applied globally. In The Computational Brain, Patricia Churchland and Terrence Sejnowski developed a different

Get Book
Brain Theory

Hardbound. The present collection of papers focuses on the subject of vision. The papers bring together new insights and facts from various branches of experimental and theoretical neuroscience. The experimental facts presented in the volume stem from disparate fields, such as neuroanatomy, electrophysiology, optical imaging and psychophysics. The theoretical models

Get Book
Coherent Behavior in Neuronal Networks

Recent experimental research advances have led to increasingly detailed descriptions of how networks of interacting neurons process information. With these developments, it has become clear that dynamic network behaviors underlie information processing, and that the observed activity patterns cannot be fully explained by simple concepts such as synchrony and phase

Get Book
The Relevance of the Time Domain to Neural Network Models

A significant amount of effort in neural modeling is directed towards understanding the representation of information in various parts of the brain, such as cortical maps [6], and the paths along which sensory information is processed. Though the time domain is integral an integral aspect of the functioning of biological systems,

Get Book