Epitaxy

This book PDF is perfect for those who love Science genre, written by Marian A. Herman and published by Springer Science & Business Media which was released on 22 January 2004 with total hardcover pages 546. You could read this book directly on your devices with pdf, epub and kindle format, check detail and related Epitaxy books below.

Epitaxy
Author : Marian A. Herman
File Size : 52,8 Mb
Publisher : Springer Science & Business Media
Language : English
Release Date : 22 January 2004
ISBN : 3540678212
Pages : 546 pages
Get Book

Epitaxy by Marian A. Herman Book PDF Summary

In a uniform and comprehensive manner the authors describe all the important aspects of the epitaxial growth processes of solid films on crystalline substrates, e.g. processes in which atoms of the growing film mimic the arrangement of the atoms of the substrate. Emphasis is put on sufficiently fundamental and unequivocal presentation of the subject in the form of an easy-to-read review. A large part of this book focuses on the problems of heteroepitaxy. The most important epitaxial growth techniques which are currently widely used in basic research as well as in manufacturing processes of devices are presented and discussed in detail.

Epitaxy

In a uniform and comprehensive manner the authors describe all the important aspects of the epitaxial growth processes of solid films on crystalline substrates, e.g. processes in which atoms of the growing film mimic the arrangement of the atoms of the substrate. Emphasis is put on sufficiently fundamental and

Get Book
Epitaxy of Semiconductors

The extended and revised edition of this textbook provides essential information for a comprehensive upper-level graduate course on the crystalline growth of semiconductor heterostructures. Heteroepitaxy is the basis of today’s advanced electronic and optoelectronic devices, and it is considered one of the most important fields in materials research and

Get Book
Epitaxy

In a uniform and comprehensive manner the authors describe all the important aspects of the epitaxial growth processes of solid films on crystalline substrates, e.g. processes in which atoms of the growing film mimic the arrangement of the atoms of the substrate. Emphasis is put on sufficiently fundamental and

Get Book
Silicon Molecular Beam Epitaxy

This subject is divided into two volumes. Volume I is on homoepitaxy with the necessary systems, techniques, and models for growth and dopant incorporation. Three chapters on homoepitaxy are followed by two chapters describing the different ways in which MBE may be applied to create insulator/Si stackings which may

Get Book
Molecular Beam Epitaxy

The book is a history of Molecular Beam Epitaxy (MBE) as applied to the growth of semiconductor thin films (note that it does not cover the subject of metal thin films). It begins by examining the origins of MBE, first of all looking at the nature of molecular beams and

Get Book
Silicon Molecular Beam Epitaxy

This two-volume work covers recent developments in the single crystal growth, by molecular beam epitaxy, of materials compatible with silicon, their physical characterization, and device application. Papers are included on surface physics and related vacuum synthesis techniques such as solid phase epitaxy and ion beam epitaxy. A selection of contents:

Get Book
Metalorganic Vapor Phase Epitaxy  MOVPE

Systematically discusses the growth method, material properties, and applications for key semiconductor materials MOVPE is a chemical vapor deposition technique that produces single or polycrystalline thin films. As one of the key epitaxial growth technologies, it produces layers that form the basis of many optoelectronic components including mobile phone components (

Get Book
Organometallic Vapor Phase Epitaxy

Here is one of the first single-author treatments of organometallic vapor-phase epitaxy (OMVPE)--a leading technique for the fabrication of semiconductor materials and devices. Also included are metal-organic molecular-beam epitaxy (MOMBE) and chemical-beam epitaxy (CBE) ultra-high-vacuum deposition techniques using organometallic source molecules. Of interest to researchers, students, and people in

Get Book