Finite Element Exterior Calculus

This book PDF is perfect for those who love Mathematics genre, written by Douglas N. Arnold and published by SIAM which was released on 12 December 2018 with total hardcover pages 126. You could read this book directly on your devices with pdf, epub and kindle format, check detail and related Finite Element Exterior Calculus books below.

Finite Element Exterior Calculus
Author : Douglas N. Arnold
File Size : 44,6 Mb
Publisher : SIAM
Language : English
Release Date : 12 December 2018
ISBN : 9781611975536
Pages : 126 pages
Get Book

Finite Element Exterior Calculus by Douglas N. Arnold Book PDF Summary

Computational methods to approximate the solution of differential equations play a crucial role in science, engineering, mathematics, and technology. The key processes that govern the physical world?wave propagation, thermodynamics, fluid flow, solid deformation, electricity and magnetism, quantum mechanics, general relativity, and many more?are described by differential equations. We depend on numerical methods for the ability to simulate, explore, predict, and control systems involving these processes. The finite element exterior calculus, or FEEC, is a powerful new theoretical approach to the design and understanding of numerical methods to solve partial differential equations (PDEs). The methods derived with FEEC preserve crucial geometric and topological structures underlying the equations and are among the most successful examples of structure-preserving methods in numerical PDEs. This volume aims to help numerical analysts master the fundamentals of FEEC, including the geometrical and functional analysis preliminaries, quickly and in one place. It is also accessible to mathematicians and students of mathematics from areas other than numerical analysis who are interested in understanding how techniques from geometry and topology play a role in numerical PDEs.

Finite Element Exterior Calculus

Computational methods to approximate the solution of differential equations play a crucial role in science, engineering, mathematics, and technology. The key processes that govern the physical world?wave propagation, thermodynamics, fluid flow, solid deformation, electricity and magnetism, quantum mechanics, general relativity, and many more?are described by differential equations. We

Get Book
Computational Electromagnetism

Presenting topics that have not previously been contained in a single volume, this book offers an up-to-date review of computational methods in electromagnetism, with a focus on recent results in the numerical simulation of real-life electromagnetic problems and on theoretical results that are useful in devising and analyzing approximation algorithms.

Get Book
Finite Element Methods for Maxwell s Equations

Since the middle of the last century, computing power has increased sufficiently that the direct numerical approximation of Maxwell's equations is now an increasingly important tool in science and engineering. Parallel to the increasing use of numerical methods in computational electromagnetism there has also been considerable progress in the mathematical

Get Book
Acta Numerica 2010  Volume 19

A high-impact, prestigious, annual publication containing invited surveys by subject leaders: essential reading for all practitioners and researchers.

Get Book
Automated Solution of Differential Equations by the Finite Element Method

This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software. The presentation spans mathematical background, software design and the use of FEniCS in applications. Theoretical aspects are complemented with computer code which is available

Get Book
Mathematical Foundations of Finite Elements and Iterative Solvers

“This book combines an updated look, at an advanced level, of the mathematical theory of the finite element method (including some important recent developments), and a presentation of many of the standard iterative methods for the numerical solution of the linear system of equations that results from finite element discretization,

Get Book
Numerical Solution of Partial Differential Equations by the Finite Element Method

An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This

Get Book
The Finite Element Method  Theory  Implementation  and Applications

This book gives an introduction to the finite element method as a general computational method for solving partial differential equations approximately. Our approach is mathematical in nature with a strong focus on the underlying mathematical principles, such as approximation properties of piecewise polynomial spaces, and variational formulations of partial differential

Get Book