Separation and Purification Technologies in Biorefineries

This book PDF is perfect for those who love Science genre, written by Shri Ramaswamy and published by John Wiley & Sons which was released on 04 February 2013 with total hardcover pages 608. You could read this book directly on your devices with pdf, epub and kindle format, check detail and related Separation and Purification Technologies in Biorefineries books below.

Separation and Purification Technologies in Biorefineries
Author : Shri Ramaswamy
File Size : 52,7 Mb
Publisher : John Wiley & Sons
Language : English
Release Date : 04 February 2013
ISBN : 9781118493465
Pages : 608 pages
Get Book

Separation and Purification Technologies in Biorefineries by Shri Ramaswamy Book PDF Summary

Separation and purification processes play a critical role in biorefineries and their optimal selection, design and operation to maximise product yields and improve overall process efficiency. Separations and purifications are necessary for upstream processes as well as in maximising and improving product recovery in downstream processes. These processes account for a significant fraction of the total capital and operating costs and also are highly energy intensive. Consequently, a better understanding of separation and purification processes, current and possible alternative and novel advanced methods is essential for achieving the overall techno-economic feasibility and commercial success of sustainable biorefineries. This book presents a comprehensive overview focused specifically on the present state, future challenges and opportunities for separation and purification methods and technologies in biorefineries. Topics covered include: Equilibrium Separations: Distillation, liquid-liquid extraction and supercritical fluid extraction. Affinity-Based Separations: Adsorption, ion exchange, and simulated moving bed technologies. Membrane Based Separations: Microfiltration, ultrafiltration and diafiltration, nanofiltration, membrane pervaporation, and membrane distillation. Solid-liquid Separations: Conventional filtration and solid-liquid extraction. Hybrid/Integrated Reaction-Separation Systems: Membrane bioreactors, extractive fermentation, reactive distillation and reactive absorption. For each of these processes, the fundamental principles and design aspects are presented, followed by a detailed discussion and specific examples of applications in biorefineries. Each chapter also considers the market needs, industrial challenges, future opportunities, and economic importance of the separation and purification methods. The book concludes with a series of detailed case studies including cellulosic bioethanol production, extraction of algae oil from microalgae, and production of biopolymers. Separation and Purification Technologies in Biorefineries is an essential resource for scientists and engineers, as well as researchers and academics working in the broader conventional and emerging bio-based products industry, including biomaterials, biochemicals, biofuels and bioenergy.

Separation and Purification Technologies in Biorefineries

Separation and purification processes play a critical role in biorefineries and their optimal selection, design and operation to maximise product yields and improve overall process efficiency. Separations and purifications are necessary for upstream processes as well as in maximising and improving product recovery in downstream processes. These processes account for

Get Book
Membrane Technologies for Biorefining

Membrane Technologies for Biorefining highlights the best practices needed for the efficient and environmentally-compatible separation techniques that are fundamental to the conversion of biomass to fuels and chemicals for use as alternatives to petroleum refining. Membrane technologies are increasingly of interest in biorefineries due to their modest energy consumption, low

Get Book
Industrial Biorefineries and White Biotechnology

Industrial Biorefineries and White Biotechnology provides a comprehensive look at the increasing focus on developing the processes and technologies needed for the conversion of biomass to liquid and gaseous fuels and chemicals, in particular, the development of low-cost technologies. During the last 3-4 years, there have been scientific and technological

Get Book
Ionic Liquids in the Biorefinery Concept

Summarising advance in the use of ionic liquids in biomass processing, this book is an important reference for researchers and practising chemists.

Get Book
Biorefinery Production Technologies for Chemicals and Energy

This book covers almost all of the diverse aspects of utilizing lignocellulosic biomass for valuable biorefinery product development of chemicals, alternative fuels and energy. The world has shifted towards sustainable development for the generation of energy and industrially valuable chemicals. Biorefinery plays an important role in the integration of conversion

Get Book
Biofuels and Biorefining

Biofuels and Biorefining: Volume One: Current Technologies for Biomass Conversion considers the conventional processes for biofuels and biomass-derived products in single and biorefinery schemes. Sections address the fundamentals of the transformation of biomass into fuels and products, including a discussion of current and future scenarios, potential raw materials that can

Get Book
Biobased Industrial Products

Petroleum-based industrial products have gradually replaced products derived from biological materials. However, biologically based products are making a comebackâ€"because of a threefold increase in farm productivity and new technologies. Biobased Industrial Products envisions a biobased industrial future, where starch will be used to make biopolymers and vegetable oils will

Get Book
Bioalcohol Production

Bioethanol is one of the main biofuels currently used as a petroleum-substitute in transport applications. However, conflicts over food supply and land use have made its production and utilisation a controversial topic. Second generation bioalcohol production technology, based on (bio)chemical conversion of non-food lignocellulose, offers potential advantages over existing,

Get Book